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We study a part of algebraic topology which lies between homology theory
and homotopy theory, and in which the fundamental group and its actions
plays an essential role.

Main applications are to higher dimensional nonabelian methods for
local-to-global problems, as exemplified by van Kampen type theorems.

Some calculations seem at this stage of the subject to require strict algebraic
models of homotopy types. In this process some nonabelian calculations are
obtained, and it is this methodology which is called nonabelian algebraic
topology.

R. Brown, P. J. Higgins and R. Sivera,
Nonabelian algebraic topology. Filtered spaces, crossed complexes,
cubical homotopy groupoids
EMS Tracts in Mathematics, European Mathematical Society (EMS),
Zürich, 2011.



It is fortunate that higher categorical structures do give nonabelian algebraic
models of homotopy types which allow some explicit calculation.

They have also led to new algebraic constructions, such as a nonabelian
tensor product of groups, of Lie algebras, and of other algebraic structures,
with relations to homology of these structures.



Topologists of the early 20th century dreamed of a generalisation to higher
dimensions of the nonabelian fundamental group, for applications to problems
in geometry and analysis for which group theory had been successful.

The nonabelian fundamental group π1(X, x0) was important in analysis,
geometry, and topology.

Homology groups Hn(X) existed in all dimensions, and were abelian.

X connected implies H1(X) ∼= π1(X, x0)ab, the fundamental group made
abelian.



So they dreamed of a higher dimensional generalisation of the fundamental
group.

The dream seemed to be shattered by the discovery that Čech’s apparently
natural 1932, for the ICM at Zürich, generalisation of the fundamental group,
the higher homotopy groups πn(X, x0), were abelian in dimensions ≥ 2.

Alexandroff and Hopf proved these groups were abelian and persuaded Čech
to withdraw his paper.

We now see this as group objects internal to the category of groups are just
abelian groups.

Problem
To recapture the higher dimensional information.



Nonabelian Algebraic Topology

Topological data Algebraic data

T op

Π

B

BU

1 There is a natural equivalence Π ◦ B ' 1.
2 U is a forgetful functor and B = U ◦ B.
3 Π satisfies a van Kampen theorem (it preserves certain colimits).
4 There is a natural transformation 1→ B ◦Π with good properties

(preserving some homotopy).
5 ideally: homotopy classification

[UX,BC] ∼= [ΠX,C] .



Precrossed and crossed modules

Definition
A precrossed module (M,P, µ) is:

a group homomorphism µ : M −→ P,
with an action of the group P on M, denoted pm, for p ∈ P and m ∈ M,
satisfying µ(pm) = pµ(m)p−1.

Definition
(M,P, µ) is a crossed module if besides it satisfies the Peiffer’s identity
µ(m)m′ = mm′m−1 for every m,m′ ∈ M.

J.H.C. Whitehead
Combinatorial homotopy II
Bull. Amer. Math. Soc. 55 (1949), 453–496.



Morphisms of precrossed and crossed modules

Definition
A morphism of precrossed (crossed) modules

(Φ,Ψ): (M1,P1, µ1)→ (M2,P2, µ2)

is a pair of group homomorphisms Φ and Ψ such that

M1

µ1

��

Φ // M2

µ2

��
P1

Ψ // P2

commutes, and such that Φ(p1 m1) = Ψ(p1)Φ(m1) for every m1 ∈ M1 and p1 ∈ P1.

Notation.
PCM : Category of precrossed modules.
CM : Category of crossed modules.



Peiffer abelianisation functor

Definition
The Peiffer subgroup of a precrossed module (M,P, µ) is the subgroup 〈M,M〉
of M generated by the Peiffer elements 〈m1,m2〉 = m1m2m−1

1
µ(m1)m−1

2 with
m1,m2 ∈ M.

Definition
The Peiffer abelianisation functor Peiff : PCM→ CM assigns to a precrossed
module (M,P, µ) the quotient (M,P, µ)Peiff = (M,P, µ)/(〈M,M〉, 0, 0).

This crossed module is not abelian in general.



Standard examples of precrossed and crossed
modules

Examples
If Y is a path-connected topological space, and X is obtained from Y attaching
2-cells, then the map ∂ : π2(X,Y, x0)→ π1(Y, x0) is a crossed module.

We have a functor Π2 : T op2
∗ → CM

J.H.C. Whitehead
Combinatorial homotopy II
Bull. Amer. Math. Soc. 55 (1949), 453–496.



Standard examples of precrossed and crossed
modules

Examples
N normal subgroup of G: (N,G, i) is a crossed module, where i : N ↪→ G
denotes the inclusion and G acts on N by conjugation (inclusion crossed
module).

P a G-group: (P,G, 0) is a precrossed module, which is a crossed module
if P is a G-module.

In particular, a group G can be regarded as a crossed module (G,G, id),
(0,G, 0), or as a precrossed module (G, 0, 0) which is a crossed module
only if G is abelian.

If G is a group, its automorphism crossed module is given by
(G,Aut(G), µ), where for g ∈ G, µ(g) is the inner automorphism of G
mapping x 7→ gxg−1.



Standard examples of precrossed and crossed
modules

Examples (Fundamental crossed module of a fibration)

Let F = (F i−→ E
p−→ B) be a fibration of pointed spaces, with F = p−1(b0) the

fibre, where b0 is the base point of B.

Then the induced map

Π2(F) = π1(F)
π1(i)−−−−→ π1(E)

is a crossed module.



Standard examples of precrossed and crossed
modules

Examples (Central extension crossed module)
Let ∂ : M → G be a surjective morphism with ker ∂ ⊂ Z(M), and g ∈ G acts on
m ∈ M by conjugation with any element of ∂−1(g).

0→ ker ∂ → M → G→ 0

Then ∂ : M → G is a crossed module.



Non-abelian tensor product

Definition (Brown & Loday, 1984)
Given two groups M and N equipped with an action of M on N and an action
of N on M the nonabelian tensor product M ⊗ N is the group generated by the
symbols m⊗ n, for m ∈ M and n ∈ N, with relations

mm′ ⊗ n = (mm′ ⊗ mn)(m⊗ n)

m⊗ nn′ = (m⊗ n)(nm⊗ nn′)

for all m,m′ ∈ M and n, n′ ∈ N, understanding that each group acts on itself by
conjugation.

M ⊗ N is not abelian group.

In case that the actions of the groups on each other are trivial, but the groups
are not necessarily abelian, then

M ⊗ N ∼= Mab ⊗ Nab .



Standard examples of precrossed and crossed
modules

Examples
Let M and N be normal subgroups of G.

The morphism

∂ : M ⊗ N → G

m⊗ n 7→ mnm−1n−1 ,

with the action g(m⊗ n) = gmg−1 ⊗ gng−1 is a crossed module.

Particular case: (G⊗ G,G, ∂).



Free crossed modules

∂ : M → G a crossed module is free on the function α : S→ G for some set S if:

S is a subset of M,

α is the restriction of ∂,

and with the universal property that for any crossed module ∂′ : M′ → G
and function β : S→ M′ such that ∂′β = α, there is a unique morphism
φ : M → M′ of crossed G-modules such that

M G

M′

∂

φ
∂′

(S α−−→ G) (M ∂−−→ G)

(M′ ∂′−−→ G)

(β, id) (φ, id)



Adjunction
The forgetful functor U : CM/G −→ Set/G has a left adjoint functor

Set/G S α−−→ G
F ↓↑ U F ↓
CM/G F(S α−−→ G)

M ∂−−→ G
↑ U

M ∂−−→ G

The free functor F : Set/G −→ CM/G, is defined by

F(S α−−→ G) = (F,G, ∂) ,

where F is the free group on the set G× S modulo Peiffer elements, where

the action is g1 · (g, s) = (g1g, s),

∂ : F → G, ∂(g, s) = g(αs)g−1, and

(g1, s1)(g2, s2)(g1, s1)−1
(
(g1αs1g−1

1 ) · (g2, s2)−1
)

= 1.



Examples of free crossed modules

Examples
If Y is a path-connected topological space, and X is obtained from Y
attaching 2-cells, then

Π2(X,Y) = π2(X,Y, x0)
∂−−→ π1(Y, x0)

is a free crossed module.

J.H.C. Whitehead
Combinatorial homotopy II
Bull. Amer. Math. Soc. 55 (1949), 453–496.

If M is a free ZG-module then (M,G, 0) is a free crossed module.

If F is a free group then (F,F, id) is a free crossed module.



Combinatorial Group Theory

Let 〈X,R〉 a presentation of the group G, i.e., F(X)/〈R〉 = G.

The free crossed module ∂ : C→ F(X) on the function R ↪→ F(X) satisfies:

im ∂ = 〈R〉 and therefore coker ∂ = G.

ker ∂ is a measure of the no trivial identities among relations and are known
as the modulo of identities or nonabelian syzygies.



Characterization of free crossed modules

Theorem (J. G. Ratcliffe, 1980)
(M,G, µ) is a free crossed module with basis {ms}s∈S if, and only if:

1 Mab is a free G/µ(M)-module with basis {[ms]}s∈S ;

2 µ(M) is the normal closure of {µ(ms)}s∈S in G ;

3 µ∗ : H2(M)→ H2(G) is trivial.



Cohomology of groups

The description of the second cohomology of a group in terms of extensions
of groups

H2(G,A) : [0→ A→ E → G→ 1]

led to a desire to find analogous interpretations of the third and higher
cohomology groups.

The third cohomology of a group of Eilenberg-Mac Lane H3(G,A) is described
in terms of crossed 2-fold extensions of the G-module A by the group G,

0→ A→ X → Y → G→ 1

where X → Y is a crossed module.



(Co)homology of groups

Huebschmann, 1980
Internal approach of the theory of (Co)homology of groups:

If A is a Q-module, then Hn(Q,A), Hn(Q,A), the n-th groups of cohomology and
homology can be obtained from a crossed resolution:

T : · · · Tk+1 → Tk → · · · → T2 → T1 → F → Q→ 1,

where T1 → F is a free crossed module and Tn are free Q-modules.



Epimorphisms

Characterization of the epimorphisms in the category of crossed
modules

A morphism (φ, η) : (T ′,G′, ∂′)→ (T,G, ∂) is an epimorphism if, and only if,

1 η is surjective,

2 φ(T ′) is a normal subgroup of T, and

3 T/φ(T ′) is a perfect group.

If G is a perfect group, then

(0, id) : (0,G, 0)→ (G,G, id)

is an epimorphism which is not surjective.



Categorification

The term categorification was introduced by Crane.

Louis Crane
Clock and category: Is quantum gravity algebraic?
J. Math. Phys. 36 (1995), 6180–6193.

The term refers to the process of replacing set-theoretic notions by the
corresponding category-theoretic analogues.



Categorification

Set Theory Category Theory
set category

element object
relation between elements morphism of objects

function functor
relation between functions natural transformation of functors

The general idea is that, replacing a simpler object by something more
complicated, one gets a bonus in the form of some extra structure which may
be used to study the original object.



Categorification

Example
The category of finite sets may be considered as a categorification of the
semi-ring (N0,+, ·) of non-negative integers.

In this picture addition is categorified via the disjoint union and multiplication
via the cartesian product.



Decategorification

It is always easier to forget information than to make it up. Therefore it is
much more natural to start the study of categorification with the study of the
opposite process of forgetting information, called decategorification.



Decategorification

Example (Grothendieck group)
Originally, the Grothendieck group was defined for a commutative monoid and
provided a universal way of making that monoid into an abelian group.

Let M = (M,+, 0) be a commutative monoid. The Grothendieck group of M is
a pair (G, ϕ), where G is a commutative group and ϕ : M → G is a
homomorphism of monoids, and with the universal property

M G

A

ϕ

ψ ψ

where A is a commutative group.



Categorification

J. C. Baez and A. D. Lauda
Higher-dimensional algebra. V. 2-groups
Theory Appl. Categ. 12 (2004), 423–491.

J. C. Baez and A. S. Crans
Higher-dimensional algebra. VI. Lie 2-algebras
Theory Appl. Categ. 12 (2004), 492–538.



Equivalent notions of precrossed module

1 Internal reflexive graph in Groups (or group-graph):

Gs 99 tee

where s and t satisfy st = t and ts = s.

2 Pre-cat1-group:

G
s //
t
// N

i

��

where si = id = ti.

3 Group object in Graphs.



Equivalent notions of crossed module

1 Internal category in Gr (or strict 2-group):

C1 C0 C1

s

t

i

where s, t and i satisfy si = ti = idC0 and a homomorphism
C1 ×s,t C1

comp−−−→ C1.

2 Cat1-group:

G G
s

t

st = t, ts = s,

[ker(s), ker(t)] = 0.

3 Group object in Cat:
It is an object G in the category and arrows 1 : ∗ → G, the unit map,
(−)−1 : G→ G, the inverse map, and m : G× G→ G, the multiplication
map, satisfying the axioms of group.



Embedding

The category of groups, Gr, can be considered a full subcategory of Cat1 − Gr
using the inclusion functor:

I : Gr → Cat1 − Gr

given by I(G) = (G, idG, idG).



Equivalence of categories

We have a functor

Φ: CM→ Cat1 − Gr

Φ(M,P, µ) = (M o P, s, t) ,

where s(m, p) = (1, p) and t(m, p) = (1, µ(m)p).

Inversely, we have a functor

Ψ: Cat1 − Gr → CM

Ψ(G, s, t) =
(
t|ker(s) : ker s→ im(s)

)
,

where im s acts on ker s by conjugation.

We have an equivalence of categories Cat1 − Gr → CM.



Identification

Therefore, the natural identification of a group as crossed module is

G ≡ (0,G, 0) .



Classifying space

The classifying space of a group P is a functorial construction

B : Gr → T op∗

assigning a reduced CW-complex BP to each group P so that

the homotopy groups of the classifying space BP satisfy

πi(BP) ∼=

{
P if i = 1,
0 if i ≥ 2.



Classifying space

If X is a reduced CW-complex then there is a map X → Bπ1(X) inducing an
isomorphism of fundamental groups, i.e.,

there is a natural transformation 1→ Bπ preserving some homotopy
properties.

Moreover, there is natural equivalence πB ' 1.

T op∗
π ↓↑ B
Gr



Algebraic models

The idea of a homotopy n-type is that of a space for which all the homotopy
groups of order higher than n are trivial.

The groups are algebraic models of homotopy 1-types.



Classifying space

The classifying space of a crossed module (M,P, µ) is a functorial
construction

B : CM→ T op∗

assigning a pointed CW-space B(M,P, µ) to each crossed module (M,P, µ)
with the following properties:

the homotopy groups of the classifying space B(M,P, µ) satisfy

πiB(M,P, µ) ∼=

 cokerµ if i = 1,
kerµ if i = 2,

0 if i ≥ 3.



Classifying space

If P is a group then BP = B(0,P, 0).

The classifying space BP is a subcomplex of B(M,P, µ), and there is a natural
isomorphism of crossed modules

Π2(B(M,P, µ),BP) ∼= (M,P, µ) .

We have a functor

B : CM→ T op2
∗

(M,P, µ) 7→ (B(M,P, µ),BP)



Classifying space

Let X be a reduced CW-complex, and let Π2(X,X1) be the crossed module
π2(X,X1)→ π1(X1), where X1 is the 1-skeleton of X.

Then there is a map X → BΠ2(X,X1) inducing an isomorphism of π1 and π2,
i.e.,

there is a natural transformation 1→ BΠ preserving some homotopy
properties.

Moreover, there is a natural equivalence ΠB ' 1.



Algebraic models

The crossed modules are algebraic models of homotopy 2-types.

T op2
∗

Π ↓↑ B
CM

T op2
∗ CM

T op

Π

B

BU



local-global

Let A,U1,U2 be subspaces of X such that the connected space X is the union
of the interior of two connected subspaces U1 y U2, with connected
intersection U12 = U1 ∩ U2 and Aν = A ∩ Uν , ν = 1, 2, 12.

Then the following diagram induced by the inclusions is a pushout of crossed
modules

Π2(U12,A12)

��

// Π2(U2,A2)

��
Π2(U1,A1) // Π2(X,A).



(Co)Homology

A theory for the (co)homology of crossed modules was introduced by G. J.
Ellis (1992), via classifying spaces.

G. J. Ellis
Homology of 2-types
Journal of the London Mathematical Society. Second Series 46 (1992),
1–27.

Let (M,P, µ) be a crossed module and A a π1-module, where π1 = P/µ(M).
The homology and cohomology of (M,P, µ) with coefficients in A are defined
by

Hn
(
(M,P, µ),A

)
= Hn(B(M,P, µ),A)

Hn((M,P, µ),A
)

= Hn(B(M,P, µ),A)



Algebraic category

The category of crossed modules is algebraic over sets.

Set
F ↓↑ U
CM

Set
F1 ↓↑ U1
Gr

F2 ↓↑ U2
CM



Algebraic category

The functor U2 is defined by:

U2(M,P, µ) = M × P

The functor F2 is defined by:

F2(G) = (G,G ∗ G, inc)

where G = ker(G ∗ G
p2−−→ G).

Therefore, the functor F is:

F(X) = (F(X),F(X) ∗ F(X), inc).



Homology of crossed modules

The abelianisation of a crossed module ∂ : T → G is the morphisms of abelian
groups

ab(∂) : T/[G,T]→ G/[G,G].

The category of abelian crossed modules is equivalent to the category of right
modules over the ring of matrices (

Z 0
Z Z

)
.



Homology of crossed modules

The CCG-homology of crossed modules was introduced by P. Carrasco, A. M.
Cegarra and A. R.-Grandjeán:

P. Carrasco, A. M. Cegarra and A. R.-Grandjeán
(Co)homology of crossed modules
J. Pure Appl. Algebra 168 (2002), 147–176.

Hn(M,P, µ) = Hn−1
(
(M·,P·, µ·)ab, ∂∗

)
Hn((M,P, µ), (A,B, f )

)
= Hn−1(HomPCM

(
(M·,P·, µ·), (A,B, f )

)
, ∂∗
)

where (M,P, µ)∗ is a projective presentation of (M,P, µ).



Homology of crossed modules

It is proved that for (0,G, 0), the homology agrees with the integral homology
of G,

Hn(0,G, 0) = Hn(G) .

Hn((0,G, 0), (A,B, f )
)

= Hn(G,B) ,

are the cohomology groups of Eilenberg-Mac Lane.



Homology of crossed modules

HCCG
i (T,G, ∂) is a homomorphism of abelian groups

ζHCCG
i (T,G, ∂)→ κHCCG

i (T,G, ∂).

The group κHCCG
i (T,G, ∂) is the integral homology Hi(BG) of the classifying

space BG.

We prove that

ζHCCG
i (T,G, ∂) = Hi+1β(T,G, ∂)

where β(T,G, ∂) is the cofibre of the canonical map

i : BG→ B(T,G, ∂).

A. R.-Grandjeán, M. Ladra and T. Pirashvili
CCG-homology of crossed modules via classifying spaces
J. Algebra 229 (2000), 660–665.



Homology of crossed modules

Therefore, the CCG-homology is closely related to the homology of crossed
modules, defined by G. J. Ellis, via classifying spaces.

Given a G-module M, we have the isomorphisms:

ζHCCG
1 (M,G, 0) = H0(G,M)

ζHCCG
2 (M,G, 0) = H1(G,M)



Example from algebraic K-theory

Let R be an associative ring with unit.

E(R) is the subgroup of GL(R) generated by the elementary matrices.

St(R) is the Steinberg group, generated by elements xij(r), with i 6= j ∈ Z
and r ∈ R, subject to the relations

xij(r)xij(s) = xij(r + s),

[xij(r), xkl(s)] = 1 if j 6= k and i 6= l,

[xij(r), xjk(s)] = xik(rs) if i 6= k.



Example from algebraic K-theory

K1(R) is the first algebraic K-theory group of R.

K2(R) is the second algebraic K-theory group of R.

Example
The nonabelian tensor product E(R)⊗ E(R) ∼= St(R) and therefore
∂ : St(R)→ GL(R) is a crossed module.

Moreover, coker ∂ = K1(R) and ker ∂ = K2(R).



Example from algebraic K-theory

For a two-sided ideal I of a ring R there exists a perfect crossed module
(E(I),E(R), i), where

E(I) = E(R) ∩ GL(I).

Theorem (Gilbert, 2000)
The universal central extension of (E(I),E(R), i) in CM is

(K2(R, I),K2(R), γ) � (St(R, I), St(R), γ) � (E(I),E(R), i)

where

St(R, I) is the relative Steinberg group defined by Loday and Keune.

K2(R, I) denotes the second relative K-theory group introduced by Loday
and Keune.



Example from algebraic K-theory

Theorem
The universal central extension in PCM of (E(I),E(R), i) is

(K2(I),K2(R), γ) � (St(I), St(R), γ) � (E(I),E(R), i),

where
St(I) and K2(I) denote their Stein relativizations.

D. Arias, M. Ladra and A. R.-Grandjeán
Universal central extensions of precrossed modules and Milnor’s relative
K2
J. Pure Appl. Algebra 184 (2003), 139–154.



Example from algebraic K-theory

Given a two-sided ideal I of a ring R and a functor Φ: Rings→ Gr, the Stein
relative group Φ(I) can be defined as follows:
denote by D the pullback of the natural ring homomorphism R � R/I.

D R

R R/I

p1

p2

The projections p1 and p2 are split by the diagonal homomorphism ∆: R→ D.
These ring homomorphisms induce the group homomorphisms

∆∗x

Φ(D)
p1∗
⇒
p2∗

Φ(R)

Φ(I) is defined as the kernel of p1∗.



Example from algebraic K-theory

HPCM
2 (St(R, I), St(R), γ)

��

��

HPCM
2 (St(R, I), St(R), γ)

��

��
HPCM

2 (E(I),E(R), i) // //

����

(St(I), St(R), γ) // //

����

(E(I),E(R), i)

HCM
2 (E(I),E(R), i) // // (St(R, I), St(R), γ) // // (E(I),E(R), i)



Example from algebraic K-theory

HPCM
2 (E(I),E(R), i) ∼= (K2(I),K2(R), γ)

HCM
2 (E(I),E(R), i) ∼= (K2(R, I),K2(R), γ)

(St(R, I), St(R), γ) = (St(I), St(R), γ)Peiff

K2(R, I) ∼=
K2(I)

〈St(I), St(I)〉



GRACIÑAS!


